Part Number Hot Search : 
ADP1877 68HC908 00010 S14059 MBR130T3 MB40958 TBH0201B HER1003G
Product Description
Full Text Search
 

To Download ALD1726 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 ADVANCED LINEAR DEVICES, INC.
ALD1726E/ALD1726
EPADTM ULTRA MICROPOWER OPERATIONAL AMPLIFIER
KEY FEATURES * * * * * * * * * * * * * EPAD ( Electrically Programmable Analog Device) User programmable VOS trimmer Computer-assisted trimming Rail-to-rail input/output Compatible with standard EPAD Programmer High precision through in-system circuit precision trimming Reduces or eliminates VOS, PSRR, CMRR and TCVOS errors System level "calibration" capability Application-Specific Programming mode In-System Programming mode Electrically programmable to compensate for external component tolerances Achieves 0.01pA input bias current and 50V input offset voltage simultaneously Compatible with industry standard pinout
BENEFITS * Eliminates manual and elaborate system trimming procedures * Remote controlled automated trimming * In-System Programming capability * No external components * No internal chopper clocking noise * No chopper dynamic power dissipation * Simple and cost effective * Small package size * Extremely small total functional volume size * Low system implementation cost * Micropower and Low Voltage
GENERAL DESCRIPTION The ALD1726E/ALD1726 is a monolithic rail-to-rail ultra-micropower precision CMOS operational amplifier with integrated user programmable EPAD (Electrically Programmable Analog Device) based offset voltage adjustment. The ALD1726E/ALD1726 is a direct replacement of the ALD1706 operational amplifier, with the added feature of user-programmable offset voltage trimming resulting in significantly enhanced total system performance and user flexibility. EPAD technology is an exclusive ALD design which has been refined for analog applications where precision voltage trimming is necessary to achieve a desired performance. It utilizes CMOS FETs as in-circuit elements for trimming of offset voltage bias characteristics with the aid of a personal computer under software control. Once programmed, the set parameters are stored indefinitely within the device even after power-down. EPAD offers the circuit designer a convenient and cost-effective trimming solution for achieving the very highest amplifier/system performance. The ALD1726E/ALD1726 operational amplifier features rail-to-rail input and output voltage ranges, tolerance to over-voltage input spikes of 300mV beyond supply rails, extremely low input currents of 0.01pA typical, high open loop voltage gain, useful bandwidth of 200KHz, slew rate of 0.17 V/s, and low typical supply current of 25A.
APPLICATIONS * * * * * * * * * * * * * * Sensor interface circuits Transducer biasing circuits Capacitive and charge integration circuits Biochemical probe interface Signal conditioning Portable instruments High source impedance electrode amplifiers Precision Sample and Hold amplifiers Precision current to voltage converter Error correction circuits Sensor compensation circuits Precision gain amplifiers Periodic In-system calibration System output level shifter
PIN CONFIGURATION
VE1
1 2 3 4 TOP VIEW DA, PA, SA PACKAGE 2
8 7 6 5
VE2 V+ OUT N/C
ORDERING INFORMATION
Operating Temperature Range -55C to +125C 8-Pin CERDIP Package ALD1726E DA ALD1726 DA 0C to +70C 8-Pin Small Outline Package (SOIC) ALD1726E SA ALD1726 SA 0C to +70C 8-Pin Plastic Dip Package ALD1726E PA ALD1726 PA
-IN +IN V-
* Contact factory for industrial temperature range
(c) 1998 Advanced Linear Devices, Inc. 415 Tasman Drive, Sunnyvale, California 94089 -1706 Tel: (408) 747-1155 Fax: (408) 747-1286 http://www.aldinc.com
FUNCTIONAL DESCRIPTION The ALD1726E/ALD1726 uses EPADs as in-circuit elements for trimming of offset voltage bias characteristics. Each ALD1726E/ALD1726 has a pair of EPAD-based circuits connected such that one circuit is used to adjust VOS in one direction and the other circuit is used to adjust VOS in the other direction. Functional Description of ALD1726E While each of the EPAD devices is a monotonically adjustable programmable device, the VOS of the ALD1726E can be adjusted many times in both directions. Once programmed, the set V OS levels are stored permanently, even when the device power is removed. The ALD1726E provides the user with an operational amplifier that can be trimmed with user application-specific programming or in-system programming conditions. User application-specific circuit programming refers to the situation where the Total Input Offset Voltage of the ALD1726E (VOST) can be trimmed with the actual intended operating conditions. The ALD1726E is pre-programmed at the factory under standard operating conditions for minimum equivalent input offset voltage. It also has a guaranteed offset voltage program range, which is ideal for applications that require electrical offset voltage programming. For example, an application circuit may have +6V and -2.5V power supplies, and the operational amplifier input is biased at +0.7V, and the average operating temperature is at 55C. The circuit can be wired up to these conditions within an environmental chamber, and the ALD1726E can be inserted into a test socket connected to this circuit while it is being electrically trimmed. Any error in V OS due to these bias conditions can be automatically zeroed out. The Total V OS error is now limited only by the adjustable range and the stability of V OS, and the input noise voltage of the operational amplifier. Therefore, this Total V OS error now includes V OS as VOS is traditionally specified; plus the VOS error contributions from PSRR, CMRR, TCVOS, and noise. Typically this total V OS error term (VOST ) is approximately 50V for the ALD1726E. The VOS contribution due to PSRR, CMRR, TCVOS and external components can be large for operational amplifiers without trimming. Therefore the ALD1726E with EPAD trimming is able to provide much improved system performance by reducing these other sources of error to provide significantly reduced VOST. In-System Programming refers to the condition where the EPAD adjustment is made after the ALD1726E has been inserted into a circuit board. In this case, the circuit design must provide for the ALD1726E to operate in normal mode and in programming mode. One of the benefits of in-system programming is that not only is the ALD1726E offset voltage from operating bias conditions accounted for, any residual errors introduced by other circuit components, such as resis-
tor or sensor induced voltage errors, can also be corrected. In this way, the "in-system" circuit output can be adjusted to a desired level eliminating other trimming components. Functional Description of ALD1726 The ALD1726 is pre-programmed at the factory under standard operating conditions for minimum equivalent input offset voltage. The ALD1726 offers similar programmable features as the ALD1726E, but with more limited offset voltage program range. It is intended for standard operational amplifier applications where little or no electrical programming by the user is necessary. USER PROGRAMMABLE VOS FEATURE Each ALD1726E/ALD1726 has two pins named VE1 and VE2 which are internally connected to an internal offset bias circuit. VE1/VE2 have initial typical values of 1.0 to 1.5 Volt. The voltage on these pins can be programmed using the ALD E100 EPAD Programmer and the appropriate Adapter Module. The useful programming range of VE1 and VE2 is 1.2 Volt to 3.0 Volts. VE1 and VE2 pins are programming pins, used during programming mode. The Programming pin is used during electrical programming to inject charge into the internal EPADs. Increases of VE1 decrease the offset voltage while increases of VE2 increase the offset voltage of the operational amplifier. The injected charge is permanently stored and determines the offset voltage of the operational amplifier. After programming, VE1 and VE2 terminals must be left open to settle on a voltage determined by internal bias currents. During programming, the voltages on VE1 or VE2 are increased incrementally to set the offset voltage of the operational amplifier to the desired Vos. Note that desired VOS can be any value within the offset voltage programmable ranges, and can be either zero, a positive value or a negative value. This VOS value can also be reprogrammed to a different value at a later time, provided that the useful VE1 or VE2 programming voltage range has not been exceeded. VE1 or VE2 pins can also serve as capacitively coupled input pins. Internally, VE1 and VE2 are programmed and connected differentially. Temperature drift effects between the two internal offset bias circuits cancel each other and introduce less net temperature drift coefficient change than offset voltage trimming techniques such as offset adjustment with an external trimmer potentiometer. While programming, V+, VE1 and VE2 pins may be alternately pulsed with 12V (approximately) pulses generated by the EPAD Programmer. In-system programming requires the ALD1726E/ALD1726 application circuit to accommodate these programming pulses. This can be accomplished by adding resistors at certain appropriate circuit nodes. For more information, see Application Note AN1700.
2
Advanced Linear Devices
ALD1726E/ALD1726
ABSOLUTE MAXIMUM RATINGS
Supply voltage, V+ Differential input voltage range Power dissipation Operating temperature range PA,SA package DA package Storage temperature range Lead temperature, 10 seconds 13.2V -0.3V to V+ +0.3V 600 mW 0C to +70C -55C to +125C -65C to +150C +260C
OPERATING ELECTRICAL CHARACTERISTICS TA = 25 oC V S = 2.5V unless otherwise specified
Parameter Supply Voltage
Symbol
VS V+ VOS i VOS VOS
Min
1.0 2.0
1726E Typ
Max
5.0 10.0
Min
1.0 2.0
1726 Typ
Max
5.0 10.0
Unit
V V V mV
Test Conditions
Single Supply RS 100K
Initial Input Offset Voltage1 Offset Voltage Program Range 2 Programmed Input Offset Voltage Error 3 Total Input Offset Voltage 4
50 10 20 50
100 1 100
75 5 75
150
150
V
At user specified target offset voltage At user specified target offset voltage TA = 25C 0C TA +70C TA = 25C
VOST
50
100
75
150
V
Input Offset Current 5
IOS
0.01
10 240
0.01
10 240
pA pA pA
Input Bias Current 5
IB
0.01
10
0.01
10
Input Voltage Range 6
VIR
-0.3 -2.8 1014 7 80
5.3 +2.8
-0.3 -2.8 1014 7 80
5.3 +2.8
V V V/C dB
V+ = +5V VS = 2.5V
Input Resistance Input Offset Voltage Drift 7 Initial Power Supply Rejection Ratio 8 Initial Common Mode Rejection Ratio 8 Large Signal Voltage Gain
RIN TCVOS PSRR i
RS 100K RS 100K
CMRR i
83
83
dB
RS 100K
AV
32 20
100
32 20 0.01 4.99 -2.40 2.40
100
V/mV V/mV 0.01 V V V V A
RL =1M 0C TA +70C R L =1M V+ = 5V 0C TA +70C R L =100K 0C TA +70C
Output Voltage Range
VO low VO high VO low VO high
4.99
0.001 4.999 -2.48
0.001 4.999 -2.48 2.48 200
-2.40
2.40
2.48 200
Output Short Circuit Current
ISC
\* NOTES 1 through 9, see section titled "Definitions and Design Notes".
ALD1726E/ALD1726
Advanced Linear Devices
3
OPERATING ELECTRICAL CHARACTERISTICS (cont'd) TA = 25oC VS = 2.5V unless otherwise specified
Parameter Supply Current Symbol IS Min 1726E Typ 25 Max 40 Min 1726 Typ 25 Max 40 Unit A Test Conditions VIN = 0V No Load VS = 2.5V
Power Dissipation Input Capacitance
PD CIN 1
200 1
200
W pF
Maximum Load Capacitance
CL
25
25
pF
Equivalent Input Noise Voltage Equivalent Input Current Noise Bandwidth Slew Rate
en in BW SR
55 0.6 400 0.17
55 0.6 400 0.17
nV/Hz fA/Hz KHz V/s
f = 1KHz f =10Hz
AV = +1 RL = 1M RL = 1M RL = 1M, CL = 25pF 0.1% AV = 1,RL=1M CL = 25pF
Rise time Overshoot Factor
tr
1.0 20
1.0 20
s %
Settling Time
ts
10
10
s
T A = 25 oC VS = 2.5V unless otherwise specified
1726E
Parameter Average Long Term Input Offset Voltage Stability 9 Initial VE Voltage Symbol VOS time VE1 i, VE2 i Min Typ 0.02 Max Min
1726
Typ 0.02 Max Unit V/ 1000 hrs V Test Conditions
1.0
1.5
Programmable VE Range
VE1, VE2
1.0
2.0
0.5
V
Programmed VE Voltage Error
e(VE1-VE2)
0.1
0.1
%
VE Pin Leakage Current
ieb
-5
-5
A
4
Advanced Linear Devices
ALD1726E/ALD1726
VS = 2.5V -55C T A +125C unless otherwise specified
1726E
Parameter Initial Input offset Voltage Input Offset Current Input Bias Current Initial Power Supply Rejection Ratio 8 Initial Common Mode RejectionRatio 8 Large Signal Voltage Gain Output Voltage Range Symbol VOS i I OS IB PSRR i 75 Min Typ 0.7 2.0 2.0 75 Max Min
1726
Typ 0.7 2.0 2.0 Max Unit mV nA nA dB RS 1M Test Conditions RS 100K
CMRR i
83
83
dB
RS 1M
AV VO low VO high
15
50 -2.40 2.40 -2.30
15
50 -2.40 2.40 -2.30
V/mV V V
RL = 1M
2.30
2.30
R L = 1M
TA = 25oC VS = 1.0V unless otherwise specified
1726E
Parameter Initial Power Supply 8 Rejection Ratio Initial Common Mode Rejection Ratio 8 Large Signal Voltage Gain Output Voltage Range Symbol PSRR i Min Typ 70 Max Min
1726
Typ 70 Max Unit dB Test Conditions RS 1M
CMRRi
70
70
dB
RS 1M
AV VO low VO high BW SR
50 -0.95 0.9 0.95 0.3 0.17 -0.9 0.90
50 -0.95 0.95 0.3 0.17 -0.90
V/mV V
RL = 1M R L = 1M
Bandwidth Slew Rate
MHz V/s AV = +1, C L = 50pF
ALD1726E/ALD1726
Advanced Linear Devices
5
TYPICAL PERFORMANCE CHARACTERISTICS
OUTPUT VOLTAGE SWING AS A FUNCTION OF SUPPLY VOLTAGE
OUTPUT VOLTAGE SWING (V)
6
OPEN LOOP VOLTAGE GAIN AS A FUNCTION OF SUPPLY VOLTAGE AND TEMPERATURE
1000
OPEN LOOP VOLTAGE GAIN (V/mV)
5 4 3 2 1 0
25C TA +125C RL = 100K
100
10 55C TA +125C RL = 100K 1 2 4 SUPPLY VOLTAGE (V) 6 8
1
2
3
4
5
6
7
0
SUPPLY VOLTAGE (V)
INPUT BIAS CURRENT AS A FUNCTION OF AMBIENT TEMPERATURE
1000
100
SUPPLY CURRENT AS A FUNCTION OF SUPPLY VOLTAGE
INPUTS GROUNDED OUTPUT UNLOADED 80 TA = -55C 60 40 20 +70C +125C 5 6 0 -25C +25C
INPUT BIAS CURRENT (pA)
10
1.0
0.1 0.01 -50 -25 0 25 50 75 100 125 AMBIENT TEMPERATURE (C)
SUPPLY CURRENT (A)
100
VS = 2.5V
0
1
2 3 4 SUPPLY VOLTAGE (V)
ADJUSTMENT IN INPUT OFFSET VOLTAGE AS A FUNCTION OF CHANGE IN VE1 AND VE2
CHANGE IN INPUT OFFSET VOLTAGE VOS (mV)
OPEN LOOP VOLTAGE GAIN AS A FUNCTION OF FREQUENCY
120 100 80 60 40 20 0 -20 0 45 90 135 180 1 10 100 1K 10K 100K FREQUENCY (Hz) 1M 10M VS = 2.5V TA = 25C
10 8
OPEN LOOP VOLTAGE GAIN (db)
PHASE SHIFT IN DEGREES
6 4 2 0 -2 -4 -6 -8 -10 0.0 0.1 0.2 0.3 0.4
VE2
VE1
0.5
0.6
CHANGE IN VE1 AND VE2 (V)
6
Advanced Linear Devices
ALD1726E/ALD1726
TYPICAL PERFORMANCE CHARACTERISTICS
COMMON MODE INPUT VOLTAGE RANGE AS A FUNCTION OF SUPPLY VOLTAGE
7 6
LARGE - SIGNAL TRANSIENT RESPONSE
2V/div VS = 1.0V TA = 25C RL = 100K CL= 25pF
COMMON MODE INPUT VOLTAGE RANGE (V)
5 4 3 2 1 0 0
TA = 25C
500mV/div
1 2 3 4 5 6 7
10s/div
SUPPLY VOLTAGE (V)
OPEN LOOP VOLTAGE GAIN AS AFUNCTION OF LOAD RESISTANCE
1000
SMALL - SIGNAL TRANSIENT RESPONSE
100mV/div VS = 2.5V TA = 25C RL = 100K CL= 25pF
OPEN LOOP VOLTAGE GAIN (V/mV)
100
10 VS = 2.5V TA = 25C 1 10K 100K 1M 10M
50mV/div
10s/div
LOAD RESISTANCE ()
LARGE - SIGNAL TRANSIENT RESPONSE
5V/div
PERCENTAGE OF UNITS (%)
DISTRIBUTION OF TOTAL INPUT OFFSET VOLTAGE BEFORE AND AFTER EPAD PROGRAMMING
100 EXAMPLE B: VOST AFTER EPAD PROGRAMMING VOST TARGET = -750V EXAMPLE A: VOST AFTER EPAD PROGRAMMING VOST TARGET = 0.0V
VS = 2.5V TA = 25C RL = 100K CL= 25pF
80
60 VOST BEFORE EPAD PROGRAMMING
40
20
2V/div
10s/div
0 -2500 -2000 -1500 -1000 -500 0 500 1000 1500 2000 2500
TOTAL INPUT OFFSET VOLTAGE (V)
ALD1726E/ALD1726
Advanced Linear Devices
7
EQUIVALENT INPUT OFFSET VOLTAGE DUE TO CHANGE IN SUPPLY VOLTAGE (V)
TWO EXAMPLES OF EQUIVALENT INPUT OFFSET VOLTAGE DUE TO CHANGE IN SUPPLY VOLTAGE vs. SUPPLY VOLTAGE
500 PSRR = 80 dB 400 EXAMPLE A: VOS EPAD PROGRAMMED AT VSUPPLY = +5V EXAMPLE B: VOS EPAD PROGRAMMED AT VSUPPLY = +8V
300
200
100
0 0 1 2 3 4 5 6 7 8 9 10
SUPPLY VOLTAGE (V)
EQUIVALENT INPUT OFFSET VOLTAGE DUE TO CHANGE IN COMMON MODE VOLTAGE (V)
THREE EXAMPLES OF EQUIVALENT INPUT OFFSET VOLTAGE DUE TO CHANGE IN COMMON MODE VOLTAGE vs. COMMON MODE VOLTAGE
500 VSUPPLY = 5V CMRR = 80dB 400
300
200
EXAMPLE B: VOS EPAD PROGRAMMED AT VIN = -4.3V
EXAMPLE A: VOS EPAD PROGRAMMED AT VIN = 0V
100
0 -5 -4 -3 -2 -1 0
EXAMPLE C: VOS EPAD PROGRAMMED AT VIN = +5V 1 2 3 4 5
COMMON MODE VOLTAGE (V)
EQUIVALENT INPUT OFFSET VOLTAGE DUE TO CHANGE IN COMMON MODE VOLTAGE (V)
EXAMPLE OF MINIMIZING EQUIVALENT INPUT OFFSET VOLTAGE FOR A COMMON MODE VOLTAGE RANGE OF 0.5V
50 COMMON MODE VOLTAGE RANGE OF 0.5V 40
30 VOS EPAD PROGRAMMED AT COMMON MODE VOLTAGE OF 0.25V
20 CMRR = 80dB 10
0 -0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4 0.5
COMMON MODE VOLTAGE (V)
8
Advanced Linear Devices
ALD1726E/ALD1726
APPLICATION SPECIFIC / IN-SYSTEM PROGRAMMING
Examples of applications where accumulated total input offset voltage from various contributing sources is minimized under different sets of user-specified operating conditions
2500
TOTAL INPUT OFFSET VOLTAGE (V) TOTAL INPUT OFFSET VOLTAGE (V)
2500 2000 1500 1000 500 0 -500 -1000 -1500 -2000 -2500 VOS BUDGET BEFORE EPAD PROGRAMMING VOS BUDGET AFTER EPAD PROGRAMMING
2000 1500 1000 500 0 -500 -1000 -1500 -2000 -2500 EXAMPLE A VOS BUDGET BEFORE EPAD PROGRAMMING VOS BUDGET AFTER EPAD PROGRAMMING
+
X
+
X
EXAMPLE B
2500
2500
TOTAL INPUT OFFSET VOLTAGE (V)
1500 1000 500 0 -500 -1000 -1500 -2000 -2500 EXAMPLE C VOS BUDGET AFTER EPAD PROGRAMMING VOS BUDGET BEFORE EPAD PROGRAMMING
TOTAL INPUT OFFSET VOLTAGE (V)
2000
2000 1500 1000 500 0 -500 -1000 -1500 -2000 -2500 EXAMPLE D VOS BUDGET BEFORE EPAD PROGRAMMING VOS BUDGET AFTER EPAD PROGRAMMING
+
X
+
X
Device input VOS PSRR equivalent VOS
Total Input VOS after EPAD Programming
+
X
CMRR equivalent VOS TA equivalent VOS Noise equivalent VOS External Error equivalent VOS
ALD1726E/ALD1726
Advanced Linear Devices
9
DEFINITIONS AND DESIGN NOTES:
1. Initial Input Offset Voltage is the initial offset voltage of the ALD1726E/ALD1726 operational amplifier when shipped from the factory. The device has been pre-programmed and tested for programmability. 2. Offset Voltage Program Range is the range of adjustment of user specified target offset voltage. This is typically an adjustment in either the positive or the negative direction of the input offset voltage from an initial input offset voltage. The input offset programming pins, VE1 or VE2, change the input offset voltage in the negative or positive direction, respectively. User specified target offset voltage can be any offset voltage within this programming range. 3. Programmed Input Offset Voltage Error is the final offset voltage error after programming when the Input Offset Voltage is at target Offset Voltage. This parameter is sample tested. 4. Total Input Offset Voltage is the same as Programmed Input Offset Voltage, corrected for system offset voltage error. Usually this is an all inclusive system offset voltage, which also includes offset voltage contributions from input offset voltage, PSRR, CMRR, TCVOS and noise. It can also include errors introduced by external components, at a system level. Programmed Input Offset Voltage and Total Input Offset Voltage is not necessarily zero offset voltage, but an offset voltage set to compensate for other system errors as well. This parameter is sample tested. 5. The Input Offset and Bias Currents are essentially input protection diode reverse bias leakage currents. This low input bias current assures that the analog signal from the source will not be distorted by it. For applications where source impedance is very high, it may be necessary to limit noise and hum pickup through proper shielding. 6. Input Voltage Range is determined by two parallel complementary input stages that are summed internally, each stage having a separate input offset voltage. While Total Input Offset Voltage can be trimmed to a desired target value, it is essential to note that this trimming occurs at only one user selected input bias voltage. Depending on the selected input bias voltage relative to the power supply voltages, offset voltage trimming may affect one or both input stages. For the ALD1726E/ ALD1726, the switching point between the two stages occur at approximately 1.5V below positive supply voltage. 7. Input Offset Voltage Drift is the average change in Total Input Offset Voltage as a function of ambient temperature. This parameter is sample tested. 8. Initial PSRR and initial CMRR specifications are provided as reference information. After programming, error contribution to the offset voltage from PSRR and CMRR is set to zero under the specific power supply and common mode conditions, and becomes part of the Programmed Input Offset Voltage Error. 9. Average Long Term Input Offset Voltage Stability is based on input offset voltage shift through operating life test at 125C extrapolated to TA = 25 C, assuming activation energy of 1.0eV. This parameter is sample tested.
ADDITIONAL DESIGN NOTES: A. The ALD1726E/ALD1726 is internally compensated for unity gain stability using a novel scheme which produces a single pole role off in the gain characteristics while providing more than 60 degrees of phase margin at unity gain frequency. A unity gain buffer using the ALD1726E/ALD1726 will typically drive 25pF of external load capacitance. B. The ALD1726E/ALD1726 has complementary p-channel and n-channel input differential stages connected in parallel to accomplish rail-to-rail input common mode voltage range. The switching point between the two differential stages is 1.5V below positive supply voltage. For applications such as inverting amplifier or non-inverting amplifier with a gain larger than 2.5 (5V operation), the common mode voltage does not make excursions below this switching point. However, this switching does take place if the operational amplifier is connected as a railto-rail unity gain buffer and the design must allow for input offset voltage variations. C. The output stage consists of class AB complementary output drivers. The oscillation resistant feature, combined with the railto-rail input and output feature, makes the ALD1726E/ALD1726 an effective analog signal buffer for high source impedance sensors, transducers, and other circuit networks. D. The ALD1726E/ALD1726 has static discharge protection. Care must be exercised when handling the device to avoid strong static fields that may degrade a diode junction, causing increased input leakage currents. The user is advised to power up the circuit before, or simultaneously with, any input voltages applied and to limit input voltages not to exceed 0.3V of the power supply voltage levels. E. VE1 and VE2 are high impedance terminals, as the internal bias currents are set very low to a few microamperes to conserve power. For some applications, these terminals may need to be shielded from external coupling sources. For example, digital signals running nearby may cause unwanted offset voltage fluctuations. Care during the printed circuit board layout to place ground traces around these pins and to isolate them from digital lines will generally eliminate such coupling effects. In addition, optional decoupling capacitors of 1000pF or greater value can be added to VE1 and VE2 terminals. F. The ALD1726E/ALD1726 is designed for use in low voltage, micropower circuits. The maximum operating voltage during normal operation should remain below 10 Volts at all times. Care should be taken to insure that the application in which the device is used do not experience any positive or negative transient voltages that will cause any of the terminal voltages to exceed this limit. G. All inputs or unused pins except VE1 and VE2 pins should be connected to a supply voltage such as Ground so that they do not become floating pins, since input impedance at these pins is very high. If any of these pins are left undefined, they may cause unwanted oscillation or intermittent excessive current drain. As these devices are built with CMOS technology, normal operating and storage temperature limits, ESD and latchup handling precautions pertaining to CMOS device handling should be observed.
10
Advanced Linear Devices
ALD1726E/ALD1726


▲Up To Search▲   

 
Price & Availability of ALD1726

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X